【导语】青春是一场远行,回不去了。青春是一场相逢,忘不掉了。但青春却留给我们最宝贵的友情。友情其实很简单,只要那么一声简短的问候、一句轻轻的谅解、一份淡淡的惦记,就足矣。当我们在毕业季痛哭流涕地说出再见之后,请不要让再见成了再也不见。这篇《高一数学必修一集合练习试题及答案》是免费高一频道为你整理的,希望你喜欢!
一、选择题
1.下列各组对象能构成集合的有
①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学
A.1个B.2个
C.3个D.4个
【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.
【答案】A
2.小于2的自然数集用列举法可以表示为
A.0,1,2B.1
C.0,1D.1,2
【解析】小于2的自然数为0,1,应选C.
【答案】C
3.下列各组集合,表示相等集合的是
①M=3,2,N=2,3;②M=3,2,N=2,3;③M=1,2,N=1,2.
A.①B.②
C.③D.以上都不对
【解析】①中M中表示点3,2,N中表示点2,3,②中由元素的无序性知是相等集合,③中M表示一个元素:点1,2,N中表示两个元素分别为1,2.
【答案】B
4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为
A.2B.2或4
C.4D.0
【解析】若a=2,则6-a=6-2=4∈A,符合要求;
若a=4,则6-a=6-4=2∈A,符合要求;
若a=6,则6-a=6-6=0∉A,不符合要求.
∴a=2或a=4.
【答案】B
5.2013•曲靖高一检测已知集合M中含有3个元素;0,x2,-x,则x满足的条件是
A.x≠0B.x≠-1
C.x≠0且x≠-1D.x≠0且x≠1
【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.
【答案】C
二、填空题
6.用符号“∈”或“∉”填空
122________R,22________x|x<7;
23________x|x=n2+1,n∈N+;
31,1________y|y=x2;
1,1________x,y|y=x2.
【解析】122∈R,而22=8>7,
∴22∉x|x<7.
2∵n2+1=3,
∴n=±2∉N+,
∴3∉x|x=n2+1,n∈N+.
31,1是一个有序实数对,在坐标平面上表示一个点,而y|y=x2表示二次函数函数值构成的集合,
故1,1∉y|y=x2.
集合x,y|y=x2表示抛物线y=x2上的点构成的集合点集,且满足y=x2,
∴1,1∈x,y|y=x2.
【答案】1∈∉2∉3∉∈
7.已知集合C=x|63-x∈Z,x∈N*,用列举法表示C=________.
【解析】由题意知3-x=±1,±2,±3,±6,
∴x=0,-3,1,2,4,5,6,9.
又∵x∈N*,
∴C=1,2,4,5,6,9.
【答案】1,2,4,5,6,9
8.已知集合A=-2,4,x2-x,若6∈A,则x=________.
【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.
【答案】-2或3
三、解答题
9.选择适当的方法表示下列集合:
1绝对值不大于3的整数组成的集合;
2方程3x-5x+2=0的实数解组成的集合;
3一次函数y=x+6图像上所有点组成的集合.
【解】1绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为-3,-2,-1,0,1,2,3;
2方程3x-5x+2=0的实数解仅有两个,分别是53,-2,用列举法表示为53,-2;
3一次函数y=x+6图像上有无数个点,用描述法表示为x,y|y=x+6.
10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.
【解】由-3∈A,得a-2=-3或2a2+5a=-3.
1若a-2=-3,则a=-1,
当a=-1时,2a2+5a=-3,
∴a=-1不符合题意.
2若2a2+5a=-3,则a=-1或-32.
当a=-32时,a-2=-72,符合题意;
当a=-1时,由1知,不符合题意.
综上可知,实数a的值为-32.
11.已知数集A满足条件:若a∈A,则11-a∈Aa≠1,如果a=2,试求出A中的所有元素.
【解】∵2∈A,由题意可知,11-2=-1∈A;
由-1∈A可知,11--1=12∈A;
由12∈A可知,11-12=2∈A.
故集合A中共有3个元素,它们分别是-1,12,2.